We have performed a systematic study of dependence of time-resolved photocurrent on the point of charge excitation within the organic semiconductor channel formed by two coplanar metal electrodes. The results confirm that spatial variation of electric field between the electrodes crucially determines transport of photogenerated charge carriers through the organic layer. Time-of-flight measurements of photocurrent demonstrate that the transit time of photogenerated charge carrier packets drifting between the two electrodes decreases with increasing travelling distance. Such counterintuitive result cannot be reconciled with the spatial distribution of electric field between coplanar electrodes, alone. It is also in contrast to expected role of space-charge screening of external electric field. Supported by Monte Carlo simulations of hopping transport in disordered organic semiconductor layer, we submit that the space-charge screens the external electric field and captures slower charge carriers from the photogenerated charge carrier packet. The remaining faster carriers, exhibit velocity distribution with significantly higher mean value and shorter transit time. More can be found in Organic Electronics.
Archives
- July 2024
- March 2024
- August 2023
- June 2023
- November 2021
- April 2021
- March 2021
- January 2021
- December 2020
- September 2020
- May 2020
- December 2018
- November 2017
- September 2017
- August 2017
- March 2017
- January 2017
- October 2016
- June 2016
- October 2015
- March 2015
- October 2014
- April 2014
- January 2014
- June 2013
- May 2013
- January 2013
- September 2012
- July 2012
- June 2012