Graphene field-effect transistor structures were used to investigate the role of molecular alignment on charge transport properties of heterostructures comprising a single-layer graphene and variable thickness of N,N′-bis(n- octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bisdicarboximide (PDI8-CN2) – an n-type organic semiconductor. Our atomic force microscopy data show that under selected growth conditions PDI8-CN2 grows in a layer-by-layer fashion up to a second monolayer. The first layer comprises flat-lying molecules, whereas the molecules in the second layer orient themselves in an upright orientation. Transconductance measurements show that the flat-lying molecules have little effect on the position of the Fermi level in graphene. Upright oriented molecules in the second layer instead, have a strong effect as to neutralize native p-type doping of graphene and cause a shift of charge-neutrality level towards the Dirac point. We interpret such behavior in terms of different orientation of the surface dipole on layers with different molecular orientations. At the same time the overall mobility of the charge carriers reaches values exceeding 3000 cm2/Vs. Read more.
Archives
- July 2024
- March 2024
- August 2023
- June 2023
- November 2021
- April 2021
- March 2021
- January 2021
- December 2020
- September 2020
- May 2020
- December 2018
- November 2017
- September 2017
- August 2017
- March 2017
- January 2017
- October 2016
- June 2016
- October 2015
- March 2015
- October 2014
- April 2014
- January 2014
- June 2013
- May 2013
- January 2013
- September 2012
- July 2012
- June 2012