Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a π-conjugated donor–acceptor dyad

Schematic view of intramolecular charge transfer by photoabsorption in ambipolar organic semiconductor

Our research team collaborated in a photoconductivity characterization of an interesting dyad molecule. A π-conjugated tetrathiafulvalene-fused perylenediimide (TTF-PDI) molecular dyad is successfully used as a solution-processed active material for light sensitive ambipolar field-effect transistors with balanced hole and electron mobilities. The photo-response of the TTF-PDI dyad resembles its absorption profile. Wavelength-dependent photoconductivity measurements reveal an important photo-response at an energy corresponding to a PDI-localized electronic π–π* transition and also a more moderate effect due to an intramolecular charge transfer from the HOMO localized on the TTF unit to the LUMO localized on the PDI moiety. This work clearly elucidates the interplay between intra- and intermolecular electronic processes in organic devices. More details can be found in original paper.

This entry was posted in Research. Bookmark the permalink.