Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors

Fast photoconductivity response of single crystal of BT8BT

Thorough investigation of fast charge transport through large single-crystal organic semiconducting layers elucidated a new type of charge transport. Together with colleagues from Belgium, Ukraine, Slovenia and Germany, we demonstrate that the degree of charge delocalization has a strong impact on polarization energy and thereby on the position of the transport band edge in organic semiconductors. This gives rise to long-range potential fluctuations, which govern the electronic transport through delocalized states in organic crystalline layers. This concept is employed to formulate an analytic model that explains a negative field dependence coupled with a positive temperature dependence of the charge mobility observed by a lateral time-of-flight technique in a high-mobility crystalline organic layer. This has important implications for the further understanding of the charge transport via delocalized states in organic semiconductors. More in PRB here.

This entry was posted in Uncategorized. Bookmark the permalink.