Graphene-induced Enhancement of N-type Mobility in Perylenediimide Thin Films

Schematic view of photocurrent dynamics in composite layers.

Schematic view of photocurrent dynamics in composite layers.

In collaboration with the University of Strasbourg and ISOF-CNR Bologna, Italy, our group published results of a study of graphene/organic semiconductor composites. Organic thin-film transistor transfer characteristics and time-of-flight (TOF) photoconductivity measurements were used to investigate the effect of the addition of liquid-phase exfoliated graphene nanoflakes (GNs) on the electron mobility in thin films of N,N’-1H,1H-perfluorobutyl dicyanoperylene-carboxydi-imide (PDIF-CN2). Transfer characteristics measurements reveal that the charge carrier mobility of PDIF-CN2 increases by almost three orders of magnitude via blending with GNs. TOF photocurrent measurements confirm that the GNs improve the charge carrier transport in PDIF-CN2. We have found a strong dependence of the TOF-determined electron mobility on the excitation wavelength and obtained a maximum mobility of 0.17 cm2/Vs for charge carriers produced in GN: PDIF-CN2 blends, using photon energy of 5.9 eV. This value is in good agreement with the field-effect mobility of 0.2 cm2/Vs determined from data recorded in the low-voltage region of transfer characteristics. More information can be found in the article.

This entry was posted in Uncategorized. Bookmark the permalink.